miércoles, 25 de febrero de 2009
martes, 24 de febrero de 2009
miércoles, 18 de febrero de 2009
APARATO REPRODUCTOR FEMENINO
El papel del aparato reproductor femenino es más complejo que el del masculino. Además de producir células sexuales conocidas como óvulos, el cuerpo femenino también protege y nutre al feto durante un periodo de unos nueve meses, mientras crece dentro del útero de la madre. Además, las mamas de la mujer sirven para proporcionar sustento a los recién nacidos.
El aparato reproductor femenino es el sistema sexual femenino. Junto con el masculino, es uno de los encargados de garantizar la procreación humana. Ambos se componen de las gónadas, órganos sexuales donde se forman los gametos y producen las hormonas sexuales, las vías genitales y los genitales externos.
Partes del aparato reproductor femenino
Partes internas del sistema reproductor femenino
El sistema reproductor femenino está compuesto por:
Órganos internos
Ovarios: son los órganos productores de gametos femeninos u ovocitos; a diferencia de los testículos, están situados en la cavidad abdominal. El proceso de formación de los óvulos, o gametos femeninos, se llama ovulogénesis y se realiza en unas cavidades o folículos cuyas paredes están cubiertas de células que protegen y nutren el óvulo. Cada folículo contiene un solo óvulo, que madura cada 28 días, aproximadamente. La ovulogénesis es periódica, a diferencia de la espermatogénesis, que es continua.
Los ovarios también producen estrógenos y progesteronas, hormonas que regulan el desarrollo de los caracteres sexuales secundarios, como la aparición de vello o el desarrollo de las mamas, y preparan al organismo para un posible embarazo.
Tubos uterinos o Trompas de Falopio: conductos que comunican los ovarios con el útero y por donde viajan los óvulos, es donde se da la fecundación. También raramente aquí se desarrolla el embrión (embarazo ectópico).
Las trompas de Falopio son unos conductos de 12 a 14 cm que tienen como función llevar el óvulo hasta el útero. El orificio de apertura de la trompa al útero se llama ostium tubárico.
Distinguimos cuatro tramos en las trompas: 1. Porción infundibular: Con forma de embudo tiene en sus bordes unos flecos llamados Fimbrias que palpan la superficie del ovario para determinar donde se va a producir la ovulación. 2. Ampolla tubárica: Es dilatada y en ella permanecerá el óvulo entre 24 y 48 horas para ser fecundado; si no es así se producirá la menstruación. 3. Istmo tubárico. 4. Porción Intramural: ubicada en las paredes del útero.
Útero: órgano hueco y musculoso en el que se desarrollará el feto. La pared interior del útero es el endometrio, el cual presenta cambios cíclicos mensuales relacionados con el efecto de hormonas producidas en el ovario, los estrógenos.
Vagina: es elcanal que comunica con el exterior, conducto por donde entrarán los espermatozoides. Su función es recibir el pene durante el coito y dar salida al bebé durante el parto.
La irrigación sanguínea de los genitales internos está dada fundamentalmente por la arteria uterina, rama de la arteria hipogástrica y la arteria ovárica, rama de la aorta.
La inervación está dada por fibras simpáticas del plexo celíaco y por fibras parasimpáticas provenientes del nervio pélvico.
Órganos externos
Región externa del aparato reproductor femenino
En conjunto se conocen como la vulva, compuestos por:
Clítoris: Órgano eréctil y altamente erógeno de la mujer y el equivalente al pene masculino.
Labios: En número de dos a cada lado, los labios mayores y los labios menores, pliegues de piel salientes, de tamaño variables, constituidas por glándulas sebáceas y sudoríparas y ricamente inervados.
Monte de Venus: Una almohadilla adiposa en la cara anterior de la sínfisis púbica, cubierto de vello púbico y provista de glándulas sebáceas y sudoríparas.
Vestíbulo vulvar: Un área en forma de almendra perforado por seis orificios, el meato de la uretra, el orificio vaginal, las glándulas de Bartolino y las glándulas parauretrales de Skene.
La forma y apariencia de los órganos sexuales femeninos varía considerablemente de una mujer a otra.
EL APARATO REPRODUCTOR MASCULINO
La función principal del aparato reproductor masculino es producir espermatozoides, las células reproductoras masculinas, y liberarlos en el cuerpo de la mujer. A diferencia de las estructuras reproductoras de las mujeres, las estructuras reproductoras masculinas están localizadas fuera de la pelvis. Esa situación externa mantiene la temperatura del esperma ligeramente más baja que la temperatura corporal, algo necesario para su desarrollo normal.
El aparato reproductor masculino, junto con el femenino, es uno de los encargados de garantizar la procreación humana.
1.Vejiga urinaria 2.Hueso púbico 3.Pene 4.Cuerpo cavernoso 5.Glande 6.Prepucio 7.Abertura de la uretra 8.Colon sigmoides 9.Recto 10.Vesícula seminal 11.Conducto eyaculador 12.Próstata 13.Glándula de Cowper (glándula bulbouretral) 14.Ano 15.Vaso deferente 16.Epidídimo 17.Testículo 18.Escroto
Se puede nombrar con los siguientes términos:
Aparato reproductivo masculino.
Aparato genital masculino.
Sistema reproductor masculino.
Sistema genital masculino.
Los órganos reproductores internos son aquellos que se encuentran en la cavidad abdominal o púbico, por lo tanto los órganos externos se encuentran fuera de ésta, aunque estén cubiertos por tejido o piel (Ejemplo: el pene y los testículos).
Está compuesto por órganos internos y externos En los seres humanos, el sistema reproductor produce, almacena, nutre y libera las células reproductoras (óvulos y espermatozoides).
Órganos internos
Epidídimo
El epidídimo, también llamado gavón, es un tubo estrecho y alargado, situado en la parte posterior superior del testículo; conecta los conductos deferentes al reverso de cada testículo. Está constituido por la reunión y apelotonamiento de los conductos seminíferos. Se distingue una cabeza, cuerpo y cola que continúa con el conducto deferente. Tiene aproximadamente 5 cm de longitud por 12 mm de ancho. Está presente en todos los mamíferos machos.
Conducto deferente
Los conductos deferentes o vasos deferentes constituyen parte de la anatomía masculina de algunas especies, incluyendo la humana. Son un par de tubos musculares rodeados de músculo liso, cada uno de 30 cm aproximadamente, que conectan el epidídimo con los conductos eyaculatorios intermediando el recorrido del semen entre éstos.
Durante la eyaculación los tubos lisos se contraen, enviando el semen a los conductos eyaculatorios y luego a la uretra, desde donde es expulsado al exterior. La vasectomía es un método de anticoncepción en el cual los vasos deferentes son cortados. Una variación moderna, que también es popularmente conocida como vasectomía aunque no incluye cortar los conductos consiste en colocar un material que obstruya el paso del semen a través de aquéllos.
Una de las consecuencias de la fibrosis quística es la ausencia de los vasos deferentes, dejando infértil al 100% de los varones que la sufren.
Vesículas seminales
Las vesículas o glándulas seminales son unas glándulas productoras de aproximadamente el 3% del volumen del líquido seminal situadas en la excavación pélvica. Detrás de la vejiga urinaria, delante del recto e inmediatamente por encima de la base de la próstata, con la que están unidas por su extremo inferior.
Conducto eyaculador
Los conductos eyaculatorios constituyen parte de la anatomía masculina; cada varón tiene dos de ellos. Comienzan al final de los vasos deferentes y terminan en la uretra. Durante la eyaculación, el semen pasa a través de estos conductos y es posteriormente expulsado del cuerpo a través del pene.
Próstata
La próstata es un órgano glandular del aparato genitourinario, exclusivo de los hombres, con forma de castaña, localizada enfrente del recto, debajo y a la salida de la vejiga urinaria. Contiene células que producen parte del líquido seminal que protege y nutre a los espermatozoides contenidos en el semen.
Uretra
La uretra es el conducto por el que discurre la orina desde la vejiga urinaria hasta el exterior del cuerpo durante la micción. La función de la uretra es excretora en ambos sexos y también cumple una función reproductiva en el hombre al permitir el paso del semen desde las vesículas seminales que abocan a la próstata hasta el exterior.
Glándulas bulbouretrales
Las glándulas bulbouretrales, también conocidas como glándulas de Cowper, son dos glándulas que se encuentran debajo de la próstata y su función es secretar un líquido alcalino que lubrica y neutraliza la acidez de la uretra antes del paso del semen en la eyaculación. Este líquido puede contener espermatozoides (generalmente arrastrados), por lo cual la práctica de retirar el pene de la vagina antes de la eyaculación no es un método anticonceptivo efectivo.
Cuerpo esponjoso
El cuerpo esponjoso es la más pequeña de las tres columnas de tejido eréctil que se encuentran en el interior del pene (las otras dos son los cuerpos cavernosos). Está ubicado en la parte inferior del miembro viril.
Su función es la de evitar que, durante la erección, se comprima la uretra (conducto por el cual son expulsados tanto el semen como la orina). Cuando el pene se encuentra en dicho estado, contiene solamente el 10% de la sangre; los cuerpos cavernosos absorben el 90% de la misma.
El glande (también conocido como cabeza del pene) es la última porción y la parte más ancha del cuerpo esponjoso; presenta una forma cónica.
Cuerpo cavernoso
Los cuerpos cavernosos constituyen un par de columnas de tejido eréctil situadas en la parte superior del pene, que se llenan de sangre durante las erecciones.
Órganos externos
Escroto
El sistema inmunológico defiende el cuerpo de la invasión de organismos que pueden causar enfermedades. El sistema inmunológico utiliza dos mecanismos de defensa: la inmunidad innata y la inmunidad adquirida. La respuesta inmunitaria innata ocurre inmediatamente para proteger el cuerpo de cualquier tipo de sustancia extraña. Este sistema utiliza barreras, como la piel y las membranas mucosas que revisten todas las cavidades corporales, y sustancias químicas protectoras, como las enzimas de la saliva y las lágrimas, que destruyen las bacterias. La respuesta inmunitaria adquirida, que requiere de una exposición previa a la sustancia extraña, se basa en la acción de glóbulos blancos especializados, llamados linfocitos, para responder a tipos específicos de invasores extraños. Los linfocitos B producen unas proteínas llamadas anticuerpos, que circulan en la sangre y atacan a los organismos específicos que causan las enfermedades. Los linfocitos T atacan a los organismos invasores directamente.
INTRODUCCIÓN
Sistema inmunológico, también llamado sistema inmune, es el sistema corporal cuya función primordial consiste en destruir los agentes patógenos que encuentra. Cualquier agente considerado extraño por un sistema inmunológico se denomina antígeno. La responsabilidad del sistema inmunológico es enorme y debe presentar una gran diversidad, con objeto de reaccionar de forma adecuada con los miles de antígenos, patógenos potenciales diferentes, que pueden invadir el cuerpo. Aún no se conocen en su totalidad los mecanismos fisiológicos complejos implicados en el sistema inmunológico, pero la investigación médica continúa desentrañándolos.
COMPONENTES
El sistema inmunológico consta de seis componentes principales, tres de los cuales son diferentes tipos de células, y los otros tres, proteínas solubles. Estos seis componentes pueden encontrarse en la sangre de diferentes formas.
Células
Macrófago engullendo una bacteria
Las tres categorías de células inmunológicas son granulocitos, monocitos/macrófagos y linfocitos. Los granulocitos son las células con núcleo más abundantes en la sangre. Estas células fagocitan (ingieren) los antígenos que penetran en el cuerpo, sobre todo si estos antígenos han sido recubiertos en la sangre por inmunoglobulinas o por proteínas del sistema del complemento (descrito más adelante bajo el epígrafe proteínas). Una vez ingeridos, los antígenos suelen ser destruidos por las potentes enzimas de los granulocitos.
Linfocitos
Los linfocitos, o glóbulos blancos de la sangre, se generan en la médula. Estas células son las principales responsables del control de las infecciones, ya que atacan de manera directa a los antígenos, o sustancias extrañas al organismo. Cuando se trasplanta un órgano, los linfocitos suelen atacar a los tejidos trasplantados, causando el rechazo del trasplante.
Los monocitos constituyen un pequeño porcentaje de la totalidad de las células sanguíneas; cuando se encuentran localizados en los tejidos, fuera de la circulación sanguínea, experimentan cambios físicos y morfológicos, y reciben el nombre de macrófagos. Al igual que los granulocitos, los monocitos también ingieren sustancias extrañas, interaccionan con las inmunoglobulinas y con las proteínas del complemento, y contienen enzimas potentes dentro de su citoplasma. Sin embargo, los monocitos alteran además los antígenos, haciendo que la respuesta inmune del tercer tipo de células inmunológicas, los linfocitos, sea más fácil y más eficaz.
En algunos aspectos, los linfocitos son las células más importantes del sistema inmunológico. Existen dos tipos principales de linfocitos: los linfocitos B y los linfocitos T. Los primeros son responsables de la inmunidad humoral o serológica; es decir, los linfocitos B y sus descendientes directos, que reciben el nombre de células plasmáticas, son las células responsables de la producción de unos componentes del suero de la sangre, denominados inmunoglobulinas. Los linfocitos T son responsables de la inmunidad celular; es decir, atacan y destruyen directamente a los antígenos. Estas células también amplifican o suprimen la respuesta inmunológica global, regulando a los otros componentes del sistema inmunológico, y segregan gran variedad de citoquinas. Los linfocitos T constituyen el 70% de todos los linfocitos. Tanto los linfocitos T como los linfocitos B tienen la capacidad de recordar, desde el punto de vista bioquímico, una exposición previa a un antígeno específico, de manera que si la exposición es repetida puede producirse una destrucción más eficaz del antígeno.
Proteínas
Los tres tipos de proteínas que forman parte del sistema inmunológico, y se encuentran disueltas en el suero (la porción líquida de la sangre), son las inmunoglobulinas, las citoquinas y las proteínas del complemento. Hay miles de clases diferentes de inmunoglobulinas, que reciben el nombre de anticuerpos; cada una de ellas se combina de manera exacta con un tipo específico de antígeno y contribuye a su eliminación. Esta inmensa diversidad es la característica principal del sistema inmunológico en conjunto.
Las citoquinas son compuestos solubles, responsables en gran parte de la regulación de la respuesta inmunológica. Si son segregadas por los linfocitos, reciben el nombre de linfoquinas; si son segregadas por los monocitos, se denominan monoquinas. Algunas citoquinas amplifican o incrementan una respuesta inmunológica que está en curso, otras hacen que las células proliferen, y otras pueden suprimir una respuesta inmunológica en funcionamiento. El sistema inmunológico, al igual que otros sistemas corporales, debe ser regulado de esta forma, de modo que el sistema esté activo cuando sea necesario, pero que no lo esté de una manera patológica.
Las proteínas del complemento forman una familia de compuestos que, junto con las inmunoglobulinas, actúan para propiciar una respuesta inmunológica adecuada. Una vez que un anticuerpo se une específicamente a su antígeno, las proteínas del complemento pueden unirse al complejo formado de esta forma, y facilitan que las células inmunológicas lleven a cabo la fagocitosis.
LA RESPUESTA INMUNOLÓGICA
Respuesta inmunitaria adquirida
La respuesta defensiva llevada a cabo por el sistema inmunológico o inmunitario frente a las sustancias extrañas recibe el nombre de respuesta inmunitaria. Las respuestas inmunitarias se clasifican en innatas (las que ocurren sin exposición previa a la sustancia ajena) y adquiridas o específicas (las que requieren exposición previa al material ajeno). Los linfocitos B y T son células especializadas que participan en la respuesta inmunitaria adquirida. Tanto los linfocitos T como los B tienen la capacidad de recordar, desde el punto de vista bioquímico, una exposición previa a un antígeno específico, de manera que si la exposición es repetida puede producirse una destrucción más eficaz del antígeno.
Los seis componentes del sistema inmunológico actúan como un todo para desarrollar una respuesta inmunitaria eficaz. La investigación ha conseguido demostrar cómo suceden muchas de las etapas de este proceso; otras fases aún son especulativas y están siendo investigadas. Sin embargo, el proceso básico es el siguiente: cuando un antígeno patógeno, por ejemplo una bacteria, consigue superar la primera línea de defensa del cuerpo, por ejemplo la piel, se encuentra en primer lugar con los granulocitos y los monocitos, y es neutralizado en parte por anticuerpos preexistentes y por las proteínas del complemento. Después, los linfocitos y los macrófagos interaccionan en el lugar donde ha entrado la bacteria, amplificando la respuesta inmunológica; se sintetizan anticuerpos más específicos y eficaces, debido a la memoria inmunológica generada por la bacteria invasora. En los ganglios linfáticos (véase Sistema linfático) más próximos puede tener lugar una amplificación similar de la respuesta inmunológica, así como en lugares más distantes, tales como el bazo y la médula ósea, donde también se sintetizan linfocitos.
Si todo funciona, el sistema inmunológico supera a la bacteria, de manera que la enfermedad está ya bajo control. En este momento se ponen en funcionamiento mecanismos autorreguladores supresores que detienen la respuesta inmunológica; las citoquinas tienen gran importancia en este proceso supresor. Si el sistema inmunológico no está autorregulado de una manera adecuada, se pueden originar otras enfermedades de naturaleza inmunopatológica. Una vez que el antígeno es destruido mediante esta combinación de acciones, el sistema inmunológico está preparado para responder de una manera más eficaz si el mismo tipo de microorganismo invadiera de nuevo el cuerpo. Si dicha preparación es adecuada para neutralizar totalmente a una bacteria específica antes de que ésta produzca la enfermedad, se dice entonces que existe inmunidad frente a dicha bacteria.
ENFERMEDADES INMUNOLÓGICAS E INMUNODEFICIENCIAS
Ciertas enfermedades de importancia clínica están relacionadas con deficiencias del sistema inmunológico, y otras están relacionadas con un funcionamiento anormal (pero por lo demás no deficiente) de dicho sistema. La disfunción o la deficiencia del sistema puede ser un fenómeno primario; esto es, congénito o adquirido; o puede tratarse de un fenómeno secundario, que aparece como consecuencia de otras enfermedades, tales como el cáncer. La inmunosupresión también puede aparecer como resultado del tratamiento administrado para otras enfermedades, incluido el cáncer.
Por lo general, las inmunodeficiencias primarias son congénitas y varían desde anormalidades benignas hasta deficiencias severas incompatibles con la vida. La disfunción de los linfocitos B y la ausencia de anticuerpos son problemas relativamente comunes, que afectan a una de cada 500 personas, y suelen estar relacionados con la aparición de infecciones recurrentes (sobre todo producidas por bacterias). Con frecuencia, este tipo de problema puede tratarse con la administración de inyecciones mensuales de gammaglobulina, la cual contiene muchos anticuerpos protectores. Los fallos en la función de los linfocitos T y en la inmunidad celular son mucho menos comunes que las deficiencias relacionadas con los anticuerpos; están relacionados sobre todo con infecciones producidas por virus y por hongos, y son más difíciles de tratar. Las inmunodeficiencias primarias más graves consisten en una deficiencia combinada tanto de células B como de células T; prácticamente todas ellas son fatales en ausencia de un tratamiento radical, tal como un trasplante de médula ósea. En los últimos años, la inmunodeficiencia que ha atraído mayor atención por parte del público ha sido el síndrome de inmunodeficiencia adquirida (SIDA).
Las inmunodeficiencias secundarias pueden ser inducidas por drogas tóxicas (como las que se utilizan en el tratamiento del cáncer) o por malnutrición, o ser secundarias a otras enfermedades (por ejemplo, cáncer). Pueden ser desde benignas a graves, o enfermedades relacionadas con los linfocitos B o con los linfocitos T, y la mejor forma de tratarlas consiste en mitigar el problema primario que las origina.
Muchas enfermedades que suelen clasificarse como enfermedades autoinmunes, se deben a una autorregulación defectuosa de la respuesta inmunológica normal. El sistema defectuoso puede destruir o dañar células y sustancias solubles normales, lo cual conduce a la aparición de una enfermedad evidente desde el punto de vista clínico. Una alergia es una reacción anormal a una sustancia con la que se ha tenido un contacto previo, y que suele ser inofensiva para otros individuos.
RESPUESTA INMUNOLÓGICA A LOS TRASPLANTES
Aunque el sistema inmunológico es esencial para la supervivencia del hombre, supone un obstáculo para el trasplante clínico de órganos. El sistema inmunológico normal es eficaz para reconocer como extrañas a las células procedentes de otros individuos. Una vez que el sistema reconoce estas células intenta destruirlas; sin una medicación inmunosupresora, como la ciclosporina, los riñones, los hígados y las médulas óseas trasplantados, serían rechazados. Sin embargo, y tal como podría predecirse, la terapia inmunosupresora podría conducir por sí misma a problemas infecciosos. Así, el paciente sometido a tratamiento está en peligro constante de padecer bien infecciones o bien el rechazo del trasplante.
RELACIÓN CON EL CÁNCER
Durante muchos años hubo gran interés por la relación existente entre el sistema inmunológico y el cáncer. En los pacientes que padecen cáncer, la tasa de infecciones es más elevada, y en estudios realizados en el laboratorio con células y suero procedentes de estos pacientes pueden observarse ciertas anormalidades inmunológicas. A la inversa, la incidencia de cáncer es mucho mayor de la que podría esperarse, tanto en pacientes con inmunodeficiencias primarias, como en pacientes sometidos a terapia inmunosupresora. Además, mejorando la respuesta del sistema inmunológico de pacientes con cáncer, mediante intervención terapéutica, se han conseguido algunos efectos positivos, aunque limitados. Sin duda, la manipulación de la respuesta inmunológica y el desarrollo de tratamientos inmunológicos tendrán un impacto positivo en los intentos para conseguir un tratamiento contra esta enfermedad.
SISTEMA DIGESTIVO
Los órganos del sistema digestivo descomponen el alimento en sustancias más sencillas, para que puedan ser absorbidas por la corriente sanguínea. Esos órganos también eliminan la materia no digerible y los productos de desecho del cuerpo a través de la excreción.
Aparato digestivo
INTRODUCCIÓN
Estómago
Localizado en el lado izquierdo del cuerpo, bajo el diafragma, el estómago es un órgano muscular que conecta el esófago con el intestino delgado. Su principal función es la descomposición de los alimentos. Las células de su revestimiento secretan enzimas, ácido clorhídrico y otros productos químicos que continúan el proceso digestivo que comienza en la boca. También produce sustancias mucosas que impiden el contacto con las propias paredes del estómago. Constituye, así mismo, un órgano dilatable de almacenamiento. Un músculo circular que existe en la parte inferior, permite al estómago guardar casi un litro y medio de comida, lo que hace posible no tener que ingerir alimento cada poco tiempo.
Aparato digestivo, conjunto de órganos que, por medios químicos y mecánicos, transforman los alimentos en sustancias solubles simples que pueden ser asimiladas por los tejidos. Este proceso, llamado digestión, varía entre los distintos grupos de vertebrados; un caso único es el de los rumiantes que poseen microorganismos simbiontes en el estómago que se encargan de digerir la celulosa.
La digestión incluye procesos mecánicos y químicos. Los procesos mecánicos consisten en la masticación para reducir los alimentos a partículas pequeñas, la acción de mezcla del estómago y la actividad peristáltica (actividad motora que facilita el avance del bolo alimenticio) del intestino. Estas fuerzas desplazan el alimento a lo largo del tubo digestivo y lo mezclan con varias secreciones.
Aunque los procesos mecánicos son importantes, la transformación de los diferentes alimentos ingeridos en unidades pequeñas utilizables depende principalmente de los procesos químicos, que se realizan gracias a la acción de distintas enzimas. La digestión química se inicia cuando se ingieren los alimentos; las seis glándulas salivares producen secreciones que se mezclan con los alimentos. La amilasa salival es una enzima presente en la saliva que rompe el almidón en maltosa, glucosa y oligosacáridos. La saliva también estimula la secreción de enzimas digestivas y lubrica la boca y el esófago para permitir el paso de sólidos.
A lo largo del tracto digestivo tienen lugar tres reacciones químicas: conversión de los hidratos de carbono en azúcares simples como la glucosa (véase Metabolismo de glúcidos), ruptura de las proteínas en aminoácidos como la alanina, y conversión de grasas en ácidos grasos y glicerol (véase Grasas y aceites). Estos procesos son realizados por enzimas específicas.
La digestión final y la absorción tienen lugar principalmente en el intestino. La digestión de las grasas ocurre esencialmente en el intestino. Las sales biliares y la lecitina se unen a los monoglicéridos y a los ácidos grasos que de esta forma pueden pasar a través de las células intestinales. Otros nutrientes como el hierro y la vitamina B12 ven facilitada su absorción por la acción de proteínas transportadoras específicas que les permiten pasar a través de las células intestinales.
ACCIÓN EN EL ESTÓMAGO Y EL INTESTINO
Intestino delgado
El intestino delgado es el lugar donde se lleva a cabo la mayor parte de la digestión. El revestimiento interno, o mucosa, está envuelto y cubierto de diminutas proyecciones llamadas vellosidades; un diseño que aumenta la superficie de absorción del intestino. Las contracciones rítmicas de las paredes musculares mueven el alimento en el intestino y al mismo tiempo, es atacado por la bilis, las enzimas y otras secreciones. Los nutrientes absorbidos por los vasos sanguíneos del intestino, pasan al hígado para ser distribuidos por el resto del organismo.
El jugo gástrico del estómago contiene agentes como el ácido clorhídrico y algunas enzimas, entre las que se encuentran pepsina, renina e indicios de lipasa. (Se cree que la superficie del estómago está protegida del ácido y de la pepsina por su cubierta mucosa). La pepsina rompe las proteínas en péptidos pequeños. La renina separa la leche en fracciones líquidas y sólidas y la lipasa actúa sobre las grasas. Algunos componentes del jugo gástrico sólo se activan cuando se exponen a la alcalinidad del duodeno; la secreción es estimulada por el acto de masticar y deglutir e incluso por la visión o idea de cualquier comida (véase Reflejo). La presencia de alimento en el estómago estimula también la producción de secreciones gástricas, éstas a su vez estimulan la liberación de secrecciones digestivas en el intestino delgado donde se completa la digestión.
La parte más importante de la digestión tiene lugar en el intestino delgado: aquí, la mayoría de los alimentos sufren una hidrólisis y son absorbidos. El material predigerido que proporciona el estómago es objeto de la acción de tres líquidos: el líquido pancreático, la secreción intestinal y la bilis. Estos líquidos neutralizan el ácido gástrico con lo que finaliza la fase gástrica de la digestión.
El líquido pancreático penetra en el intestino delgado a través de varios conductos. Contiene tripsina y quimiotripsina, enzimas que continúan la digestión enzimática de las proteínas en componentes más simples que se pueden absorber y utilizar en la reconstrucción de proteínas del organismo. La lipasa pancreática rompe las grasas; la amilasa pancreática hidroliza el almidón en maltosa (al igual que la amilasa salival), que más tarde otras enzimas rompen en glucosa y fructosa; las nucleasas rompen el ADN y el ARN en nucleótidos. La secreción del jugo pancreático es estimulada por la ingestión de proteínas y grasas.
Las secreciones del intestino delgado contienen varias enzimas cuya función es completar el proceso iniciado por el jugo pancreático. El flujo de las secreciones intestinales es estimulado por la presión mecánica del alimento digerido parcialmente en el intestino.
Intestino grueso
Sujeto en el abdomen por las membranas llamadas mesenterios, el intestino grueso es la parte final del aparato digestivo. El material no digerido pasa desde el intestino delgado en forma líquida y fibrosa. En el intestino grueso, los segmentos musculares mueven este material adelante y atrás, mezclándolo por completo. Las células de las paredes lisas absorben vitaminas, minerales y agua. Los residuos condensados, llamados heces, abandonan el organismo a través del recto.
La función de las sales biliares en la digestión es ayudar a la absorción de las grasas, que emulsionan y las hacen más accesibles a las lipasas que las hidrolizan. La bilis, segregada por el hígado y almacenada en la vesícula biliar, fluye al intestino delgado tras la ingestión de grasas. La observación de una ictericia obstructiva (que impide la secreción biliar) pone de relieve la ineficacia de la digestión de grasas en ausencia de bilis.
La absorción de los productos de la digestión a través de la pared del intestino delgado puede ser pasiva o activa. El sodio, la glucosa y muchos aminoácidos son transportados de forma activa. Por lo tanto, los productos de la digestión son asimilados por el organismo a través de la pared intestinal, que es capaz de absorber sustancias nutritivas de forma selectiva, rechazando otras sustancias similares. Los hidratos de carbono sólo se pueden absorber como monosacáridos; las proteínas se absorben como aminoácidos, aunque ciertas proteínas pequeñas pueden atravesar la barrera intestinal. El estómago y el colon —en el intestino grueso— tienen también la capacidad de absorber agua, ciertas sales, alcohol y algunos fármacos. La absorción intestinal tiene otra propiedad única: muchos nutrientes se absorben con más eficacia cuando la necesidad del organismo es mayor. En el adulto, la superficie replegada de absorción del intestino supone 140 m2. La absorción está favorecida también por la longitud del intestino delgado que es de 6,7 a 7,6 m como valor medio.
Las sustancias hidrosolubles, tales como minerales, aminoácidos y algunos hidratos de carbono, pasan al sistema de capilares del intestino y a través de los vasos del sistema portal, directamente al hígado. Sin embargo, muchas de las grasas se vuelven a sintetizar en la pared del intestino y son recogidas por el sistema linfático, que las conduce a la circulación sistémica a través del sistema de la vena cava. Con ello se evita el primer paso a través del hígado.
EXCRECIÓN
El material no digerido se transforma en el colon en una masa sólida por la reabsorción de agua hacia el organismo. Si las fibras musculares del colon impulsan demasiado rápido la masa fecal por él, ésta permanece semilíquida. El resultado es la diarrea. En el otro extremo, la actividad insuficiente de las fibras musculares del colon produce estreñimiento. Las heces permanecen en el recto hasta que se excretan a través del ano.
Muchos trastornos de la absorción reciben el nombre genérico de malabsorción; uno de los más importantes es el esprue.
EL SISTEMA RESPIRATORIO
El aparato respiratorio está compuesto por los pulmones, un par de órganos elásticos situados en la cavidad torácica o tórax, y los tubos de aire que conducen hasta ellos. El aire que entra en los pulmones proporciona oxígeno a las células del organismo. El aire expulsado de los pulmones elimina el dióxido de carbono del organismo. En el proceso de la respiración, el aire entra en el sistema respiratorio a través de la nariz o la boca. Pasa entonces a través de la laringe y llega a la tráquea. En el centro del pecho aproximadamente, la tráquea se divide en dos tubos, los bronquios derecho e izquierdo. El bronquio derecho se divide en tres ramas, que llevan el aire a los tres lóbulos del pulmón derecho. El bronquio izquierdo se bifurca en dos ramas, que proporcionan aire a los dos lóbulos del pulmón
El aparato respiratorio generalmente incluye tubos, como los bronquios, usados para cargar aire en los pulmones, donde ocurre el intercambio gaseoso. El diafragma como todo musculo puede contraerse y relajarse. Al relajarse los pulmones al contar con espacio se expanden para llenarse de aire y al contraerse el mismo es expulsado . Estos sistemas respiratorios varían de acuerdo al organismo.
En humanos y otros mamíferos, el sistema respiratorio consiste en vías aéreas, pulmones y músculos respiratorios que medían en el movimiento del aire tanto adentro como afuera del cuerpo. Intercambio de gases:es el intercambio de oxígeno y dioxido de carbono, del animal con su medio. Dentro del sistema alveolar de los pulmones, las moléculas de oxigeno y dióxido de carbono se intercambian pasivamente, por difusión, entre el entorno gaseoso y la sangre. Así, el sistema respiratorio facilita la oxigenación con la remoción concomitante del dioxido de carbono -y otros gases que son desechos del metabolismo- de la circulación.
El sistema también ayuda a mantener el balance entre ácidos y bases en el cuerpo a tráves de la eficiente remoción de dioxido de carbono de la sangre.
En seres simples
Los protozoos (organismos unicelulares), así como las hidras y las medusas (organismos pluricelulares que están compuestas por dos capas de células), respiran a través de su membrana celular (por medio de difusión) y la mitocondria. (Ver respiración celular)
En organismos complejos
La lombriz de tierra realiza el intercambio de gases a través de su piel (respiración cutánea).
Los insectos, en cambio, bombean aire directamente a los tejidos corporales por medio de una red de tubos, llamados tráqueas, que se abren a los costados del cuerpo. La zona final del sistema traqueal está formada por finísimos conductos denominados Traqueolas
Los peces introducen agua a través de su boca bañando las branquias donde captan oxígeno y liberan el dióxido de carbono; luego expulsan el agua a través del opérculo (una abertura que tienen a cada lado del cuerpo).
Los anfibios mudan su sistema respiratorio durante su paso desde su vida acuática (cuando son jóvenes) a la terrestre cuando son adultos. Así, los renacuajos respiran por medio de branquias, igual que los peces; pero una vez realizada la metamorfosis (por ejemplo como ranas o sapos) respiran por medio de pulmones y en algunos casos, por la respiración cutánea.
En el ser humano
El hombre utiliza respiración pulmonar cuyo aparato respiratorio consta de:
Sistema de conducción: fosas nasales, boca, faringe, laringe, tráquea, bronquios principales, bronquios lobares, bronquios segmentarios y bronquiolos.
Sistema de intercambio: conductos y los sacos alveolares. El espacio muerto anatómico, o zona no respiratoria (no hay intercambios gaseosos) del árbol bronquial incluye las 16 primeras generaciones bronquiales, siendo su volumen de unos 150 ml.
Fisiología
La función del aparato respiratorio consiste en desplazar volúmenes de aire desde la atmósfera a los pulmones y viceversa. Lo anterior es posible gracias a un proceso conocido como ventilación. La ventilación es un proceso cíclico y consta de dos etapas: la inspiración, que es la entrada de aire a los pulmones, y la espiración, que es la salida. La inspiración es un fenómeno activo, caracterizado por el aumento del volumen torácico que provoca una presión intrapulmonar negativa y determina el desplazamiento de aire desde el exterior hacia los pulmones. La contracción de los músculos inspiratorios principales, diafragma e intercostales externos, es la responsable de este proceso. Una vez que la presión intrapulmonar iguala a la atmosférica, la inspiración se detiene y entonces, gracias a la fuerza elástica de la caja torácica, esta se retrae, generando una presión positiva que supera a la atmosférica y determinando la salida de aire desde los pulmones. En condiciones normales la espiración es un proceso pasivo. Los músculos espiratorios activos son capaces de disminuir aún más el volumen intratorácico y aumentar la cantidad de aire que se desplaza al exterior, lo que ocurre en la espiración forzada. Mientras este ciclo ventilario ocurre, en los sacos alveolares, los gases contenidos en el aire que participan en el intercambio gaseoso, oxígeno y dióxido de carbono, difunden a favor de su gradiente de concentración, de lo que resulta la oxigenación y detoxificación de la sangre. El volumen de aire que entra y sale del pulmón por minuto, tiene cierta sincronía con el sistema cardiovascular y el ritmo circadiano (como disminución de la frecuencia de inhalación/exhalación durante la noche y en estado de vigilia/sueño). Variando entre 6 a 80 litros (dependiendo de la demanda). Se debe tener cuidado con los peligros que implica la ventilación pulmonar ya que junto con el aire también entran partículas sólidas que puede obstruir y/o intoxicar al organismo. Las de mayor tamaño son atrapadas por los vellos y el material mucoso de la nariz y del tracto respiratorio, que luego son extraídas por el movimiento ciliar hasta que son tragadas, escupidas o estornudadas. A nivel bronquial, por carecer de cilios, se emplean macrófagos y fagocitos para la limpieza de partículas.
Adaptación a alturas
Siempre vamos a tener una fracción inspirada de oxígeno de 21% (FiO2) pero a medida que va aumentando la altura irá bajando la presión de oxígeno que inspiramos.
Generalmente sucede que nos apunamos si subimos una montaña muy alta, eso es porque el organismo aún no se acostumbra a tanto cambio de presiones, se habla entonces de una hipoxia de alturas, cuyas consecuencias son:
Inmediatas
Hay taquicardia y aumento del gasto cardíaco, aumento de la resistencia de la arteria pulmonar, hiperventilación (que si es excesiva puede llevar a una alcalosis respiratoria), cambios mentales, aumento de la frecuencia cardíaca y aumento de la presión arterial por aumento del tono adrenérgico.
Crónicas
Aumento de la masa de glóbulos rojos, aumento del p50, compensación renal de la alcalosis respiratoria, aumento de la densidad de capilares musculares y aumento del número de mitocondrias y sus enzimas oxidativas.
Definición de los órganos
Vía Nasal: Consiste en dos amplias cavidades cuya función es permitir la entrada del aire, el cual se humedece, limpia y calienta a una determinada temperatura a través de unas estructuras llamadas pituitarias.
Faringe: es un conducto muscular, membranoso que ayuda a que el aire se vierta hacia las vías aéreas inferiores.
Epiglotis: es una tapa que impide que los alimentos entren en la laringe y en la tráquea al tragar. También marca el límite entre la orofaringe y la laringofaringe.
Laringe: es un conducto que cuya función principal es la filtración del aire inspirado. Además, permite el paso de aire hacia la tráquea y los pulmones y se cierra para no permitir el paso de comida durante la deglución si la propia no la ha deseado y tiene la función de órgano fonador, es decir, produce el sonido.
Tráquea: Brindar una vía abierta al aire inhalado y exhalado desde los pulmones.
Bronquio: Conducir el aire que va desde la tráquea hasta los bronquiolos.
Bronquiolo: Conducir el aire que va desde los bronquios pasando por los bronquiolos y terminando en los alvéolos.
Alvéolo: Permite el intercambio gaseoso, es decir, en su interior la sangre elimina el dióxido de carbono y recoge oxígeno.
Pulmones: La función de los pulmones es realizar el intercambio gaseoso con la sangre, por ello los alvéolos están en estrecho contacto con capilares.
Músculos intercostales: La función principal de los músculos respiratorios es la de movilizar un volumen de aire que sirva para, tras un intercambio gaseoso apropiado, aportar oxígeno a los diferentes tejidos.
Diafragma: Músculo estriado que separa la cavidad toráxica (pulmones, mediastino, etc.) de la cavidad abdominal (intestinos, estómago, hígado, etc.). Interviene en la respiración, descendiendo la presión dentro de la cavidad toráxica y aumentando el volumen durante la inhalación y aumentando la presión y disminuyendo el volumen durante la exhalación. Este proceso se lleva a cabo, principalmente, mediante la contracción y relajación del diafragma.
SISTEMA MUSCULAR
La siguiente ilustración muestra la compleja red de músculos esqueléticos del cuerpo. Los músculos esqueléticos se unen a los huesos del esqueleto y permiten los movimientos voluntarios. Un músculo esquelético se une a los huesos que constituyen la articulación, bien directamente o por medio de un tendón o una banda fibrosa llamada fascia. Los huesos se mueven cuando los músculos se contraen o se acortan en la articulación. El tamaño de un músculo depende de la función que desempeña. Cuando se requiere destreza, como en los dedos, los músculos suelen ser muy pequeños. Cuando se necesita fuerza, como en el muslo, los músculos son grandes.
EL SISTEMA MUSCULAR (POSTERIOR)
La siguiente ilustración muestra la compleja red de músculos esqueléticos del cuerpo. Los músculos esqueléticos se unen a los huesos del esqueleto y permiten los movimientos voluntarios. Un músculo esquelético se une a los huesos que constituyen la articulación, bien directamente o por medio de un tendón o una banda fibrosa llamada fascia. Los huesos se mueven cuando los músculos se contraen o se acortan en la articulación. El tamaño de un músculo depende de la función que desempeña. Cuando se requiere destreza, como en los dedos, los músculos suelen ser muy pequeños. Cuando se necesita fuerza, como en el muslo, los músculos son grandes.
Componentes del sistema muscular
El sistema muscular está formado por músculos y tendones.
Los Músculos
Músculos esqueléticos del brazo, durante una contracción: bíceps braquial -izquierda, a la izquierda- y tríceps braquial -derecha, a la derecha-. El primero flexiona el brazo, y el segundo lo extiende. Son músculos antagonistas.
La principal función de los músculos es contraerse, para poder generar movimiento y realizar funciones vitales. Se distinguen tres grupos de músculos, según su disposición:
· El músculo esquelético
· El músculo liso
· El músculo cardíaco
Dependiendo de la forma en que sean controlados:
· Voluntarios: Controlados por el individuo
· Involuntarios o Viscerales: Dirigidos por el sistema nervioso central
· Autónomo: Su función es contraerse regularmente sin detenerse.
· Mixtos: músculos controlados por el individuo y por sistema nervioso, por ejemplo los párpados.
Los músculos están formados por una proteína llamada miosina, la misma se encuentra en todo el reino animal e incluso en algunos vegetales que poseen la capacidad de moverse. El tejido muscular se compone de una serie de fibras agrupadas en haces o masas primarias y envueltas por la aponeurosis una especie de vaina o membrana protectora, que impide el desplazamiento del músculo. Las fibras musculares poseen abundantes filamentos intraprotoplasmáticos, llamados miofibrillas, que se ubican paralelamente a lo largo del eje mayor de la célula y ocupan casi toda la masa celular. Las miofibrillas de las fibras musculares lisas son aparentemente homogéneas, pero las del músculo estriado presentan zonas de distinta refringencia, lo que se debe a la distribución de los componentes principales de las miofibrillas, las proteínas de miosina y actina.
La forma de los músculos
Cada músculo posee una determinada estructura, según la función que realicen, entre ellas encontramos:
Fusiformes músculos con forma de huso. Siendo gruesos en su parte central y delgados en los extremos.
Planos y anchos, son los que se encuentran en el tórax (abdominales), y protegen los órganos vitales ubicados en la caja toráxica.
Abanico, los músculos pectorales o los temporales de la mandíbula.
Circulares, músculos en forma de aro. Se encuentran en muchos órganos, para abrir y cerrar conductos. por ejemplo el píloro o el orificio anal.
Orbiculares, músculos semejantes a los fusiformes, pero con un orificio en el centro, sirven para cerrar y abrir otros órganos. Por ejemplo los labios y los ojos
Los Tendones
Los tendones son tejidos musculares, de color blanco, cuya función principal es unir el músculo con el hueso. La estructura de este tejido consta de fibras
Existen dos tipo de Tendones según su disposición:
Sin vaina sinovial: se localizan en zonas de baja fricción
Con vaina sinovial: se localizan en zonas de mayor fricción.
Funcionamiento
Los músculos son asociados generalmente en las funciones obvias como el movimiento, pero en realidad son también los que nos permiten impulsar la comida por el sistema digestivo, respirar y hacer circular a la sangre .
El funcionamiento sistema muscular se puede dividir en 3 procesos, uno voluntario a cargo de los músculos esqueléticos el otro involuntario realizado por los músculos viscerales y el último proceso deber de los músculos cardíacos y de funcionamiento autónomo.
Los músculos esqueléticos permiten caminar, correr, saltar, en fin facultan una multitud de actividades voluntarias. A excepción de los reflejos que son las repuestas involuntarias generadas como resultado de un estimulo. En cuanto a los músculos de funcionamiento involuntario, se puede especificar que se desempeñan de manera independiente a nuestra voluntad pero son supervisados y controlados por el sistema nervioso, se encarga de generar presión para el traslado de fluidos y el transporte se sustancias a lo largo del organismo con ayuda de los movimientos peristálticos (como el alimento, durante el proceso de digestión y excreción). El proceso autónomo se lleva a cabo en el corazón, órgano hecho con músculos cardíacos. La función primordial de este tejido muscular es contraerse regularmente, millones de veces, debiendo soportar la fatiga y el cansancio, o sino el corazón se detendría.
Cuidado del sistema muscular
Para mantener al sistema muscular en óptimas condiciones, se debe tener presente una dieta equilibrada, con dosis justas de glucosa que es la principal fuente energética de nuestros músculos. Evitar el exceso en el consumo de grasas, ya que no se metabolizan completamente, produciendo sobrepeso. Para rutinas de ejercicios físicos prolongados, necesitan una dieta rica en azúcares y vitaminas.
Además de una alimentación saludable se recomienda ejercicio físico, el ejercicio muscular produce que los músculos trabajen, desarrollándose aumentando su fuerza y volumen, adquiriendo elasticidad y contractilidad, resistiendo mejor a la fatiga. También beneficia el desarrollo del esqueleto lo robustece, fortalece y modela, debido a la tracción que los músculos ejercen sobre los huesos, si los ejercicios son correctamente practicados, perfeccionan la armonía de las líneas y curvas. El ejercicio ayuda al desempeño de los órganos. Aumenta el volumen de la toráxico, mejora la respiración y la circulación sanguínea, ampliando el tamaño de los pulmones y del corazón. Otro efecto del ejercicio físico, es que provoca un aumento considerable en el apetito, favoreciendo la digestión y la asimilación de los alimentos.
Enfermedades
Las enfermedades que afectan al sistema muscular pueden ser producidas por algunos virus que atacan directamente al músculo, también se experimentan dolencias por cansancio muscular, posturas inadecuadas, ejercicios bruscos o accidentes.
Poliovirus, causante de la poliomielitis
Algunas enfermedades y dolencias que afectan al sistema muscular son:
Desgarro: ruptura del tejido muscular.
Calambre: contracción espasmódica involuntaria, que afecta a los músculos superficiales.
Esguince: lesión producida por un daño moderado o total de las fibras musculares.
Distrofia muscular: Degeneración de los músculos esqueléticos.
Atrofia: pérdida o disminución del tejido muscular,
Hipertrofia: crecimiento o desarrollo anormal de los músculos, produciendo en algunos casos serias deformaciones.
Poliomielitis: conocida comúnmente como polio. Es una enfermedad producida por un virus, que ataca al sistema nervioso central, y ocasiona que los impulsos nerviosos no se transmitan y las extremidades se atrofien.
Miastenia gravis: es un trastorno neuromuscular, se caracteriza por una debilidad del tejido muscular.
Todos los músculos en orden alfabético
Miscelánea
El fisiculturismo (del francés culturisme) es una disciplina utilizada para el desarrollo de las fibras del sistema muscular, mediante la combinación de ejercicio físico como el levantamiento de peso, aumento de la ingesta calórica y descanso para desarrollar una gran musculatura y un cuerpo bien definido y voluminoso.
Para lograr la relajación del cuerpo y aliviar las contracturas y tensiones del sistema muscular, existen numerosas técnicas de masaje, que en muchos países se estudian a nivel universitario bajo el título de kinesiología.
En el cuerpo humano masculino los músculos representan un 40 a un 50% del peso corporal, en la mujer representa de un 30% a un 40%. El músculo más grande es el glúteo, que forma las nalgas, y el más pequeño el estribo (hueso) en el sistema auditivo. El más largo es el sartorio , que en correspondencia con el fémur -también el hueso más largo del cuerpo- va desde la pelvis hasta abajo de la rodilla. Cuando caminamos, utilizamos al mismo tiempo más de 200 músculos diferentes. El músculo más rápido del cuerpo es de los párpados, capaz de abrirlos y cerrarlos hasta 5 veces por segundo. El músculo más fuerte es el masetero, que pese a que sólo mida 5 cm puede desarrollar una fuerza de más de 4kN. El músculo que más se desarrolla es el miometrio, que sus fibras pasan a tener de una longitud de 3 micras a 500 micras en el momento del parto.
El cansancio muscular se origina en la producción de ácido láctico, sumado al trabajo muscular excesivo, que supone requerimientos mayores de glucosa y oxígeno.
Un mineral fundamental en el trabajo muscular es el magnesio, cuyo requerimiento diario en un adulto oscila entre 310 y 420 mg.Si bien el exceso de magnesio es tóxico, su carencia produce inconvenientes en el funcionamiento muscular, que suelen presentar sus primeros síntomas a través de calambres.
Aunque solemos asociar a los músculos con el movimiento, pensamos generalmente en las funciones obvias; en realidad son también los que nos permiten impulsar la comida por el sistema digestivo, respírar y hacer circular a la sangre.
Una técnica singular -y por otro lado libre de riesgos- para reducir los síntomas de un calambre consiste en mantener durante varios segundos un pellizco sobre la boca, en el labio superior. Esto puede tener relación con la manipulación del sistema nervioso que practican técnicas como la dígitopuntura.
martes, 17 de febrero de 2009
SISTEMA NERVIOSO
El sistema nervioso humano supervisa la actividad de los otros sistemas corporales. Consta de dos secciones principales: el sistema nervioso central y el sistema nervioso periférico. El sistema nervioso central se compone del encéfalo y de la médula espinal. La red de nervios que conecta esos dos órganos con el resto del cuerpo constituye el sistema nervioso periférico. Juntos, el sistema nervioso central y el periférico, controlan las funciones voluntarias e involuntarias del organismo.
INTRODUCCIÓN
Sistema nervioso humano
Sistema nervioso, conjunto de los elementos que en los organismos animales están relacionados con la recepción de los estímulos, la transmisión de los impulsos nerviosos o la activación de los mecanismos de los músculos.
ANATOMÍA Y FUNCIÓN
En el sistema nervioso, la recepción de los estímulos es la función de unas células sensitivas especiales, los receptores. Los elementos conductores son unas células llamadas neuronas que pueden desarrollar una actividad lenta y generalizada o pueden ser unas unidades conductoras rápidas, de gran eficiencia. La respuesta específica de la neurona se llama impulso nervioso; ésta y su capacidad para ser estimulada, hacen de esta célula una unidad de recepción y emisión capaz de transferir información de una parte a otra del organismo.
Célula nerviosa
La neurona es la unidad funcional del sistema nervioso y está formada por el cuerpo celular, que contiene el núcleo y la mayor parte del citoplasma; unas prolongaciones cortas, normalmente muy ramificadas, que salen del cuerpo celular y que reciben el nombre de dendritas; y una prolongación más larga denominada axón. El axón de las neuronas del sistema nervioso periférico está rodeado de múltiples capas de membrana celular (mielina) de una célula de Schwann. Esta capa mielínica está interrumpida periódicamente en los nódulos de Ranvier.
Cada célula nerviosa o neurona consta de una porción central o cuerpo celular, que contiene el núcleo y una o más estructuras denominadas axones y dendritas. Estas últimas son unas extensiones bastante cortas del cuerpo neuronal y están implicadas en la recepción de los estímulos. Por contraste, el axón suele ser una prolongación única y alargada, muy importante en la transmisión de los impulsos desde la región del cuerpo neuronal hasta otras células.
Sistemas simples
Los sistemas nerviosos aumentan en complejidad desde la malla de células nerviosas de la medusa hasta el sistema central y periférico de la especie humana. La estructura nerviosa de la lombriz de tierra es común a muchos animales; consiste en un ganglio cerebral, un cordón nervioso principal y pares de nervios laterales ramificados. En algunos casos, como en los insectos, el ganglio cerebral actúa como un cerebro primitivo, ya que controla y coordina varias funciones básicas.
Aunque todos los animales pluricelulares tienen alguna clase de sistema nervioso, la complejidad de su organización varía de forma considerable entre los diferentes tipos de organismos. En los animales simples, como los cnidarios, las células nerviosas forman una red capaz de mediar respuestas estereotipadas. En los animales más complejos, como crustáceos, insectos y arañas, el sistema nervioso es más complicado. Los cuerpos celulares de las neuronas están organizados en grupos llamados ganglios, que se interconectan entre sí formando las cadenas ganglionares. Estas cadenas están presentes en todos los vertebrados, en los que representan una parte especial del sistema nervioso relacionada en especial con la regulación de la actividad del corazón, las glándulas y los músculos involuntarios.
Aunque casi todos los vertebrados comparten el mismo tipo básico de estructura cerebral o encéfalo formada por tres partes, el desarrollo de sus elementos constituyentes varía a través de la escala evolutiva. En peces, el telencéfalo (una de las partes, que más tarde originará el cerebro) es pequeño con respecto al resto del encéfalo (cerebro, cerebelo y tronco cerebral) y se encarga de recibir información procedente de los sentidos. En reptiles y anfibios, el telencéfalo es más grande en proporción y comienza a enlazar las informaciones recibidas y a procesarlas. Las aves tienen unos lóbulos ópticos que están bien desarrollados; por ello el telencéfalo es más grande. En los mamíferos, el telencéfalo predomina en la estructura cerebral. El más desarrollado es el de los primates, en los cuales las capacidades cognitivas son las más evolucionadas.
Los animales vertebrados tienen una columna vertebral y un cráneo en los que se aloja el sistema nervioso central, mientras que el sistema nervioso periférico se extiende a través del resto del cuerpo. La parte del sistema nervioso localizada en el cráneo es el cerebro y la que se encuentra en la columna vertebral es la médula espinal. El cerebro y la médula espinal se comunican por una abertura situada en la base del cráneo y están también en contacto con las demás zonas del organismo a través de los nervios. La distinción entre sistema nervioso central y periférico se basa en la diferente localización de las dos partes, íntimamente relacionadas, que constituyen el primero. Algunas de las vías de los cuerpos neuronales conducen señales sensitivas y otras vías conducen respuestas musculares o reflejos, como los causados por el dolor.
Médula espinal: estructura anatómica
La médula espinal está contenida dentro del canal vertebral y, junto con el encéfalo, constituye el sistema nervioso central. En su interior, la sustancia gris tiene forma de H y está constituida por los cuerpos celulares de las neuronas medulares; la sustancia blanca, en cambio, está compuesta por fibras nerviosas.
En la piel se encuentran unas células especializadas, llamadas receptores, de diversos tipos, sensibles a diferentes estímulos; captan la información (como por ejemplo, la temperatura, la presencia de un compuesto químico, la presión sobre una zona del cuerpo), y la transforman en una señal eléctrica que utiliza el sistema nervioso. Las terminaciones nerviosas libres también pueden recibir estímulos: son sensibles al dolor y son directamente activadas por éste. Estas neuronas sensitivas, cuando son activadas mandan los impulsos hacia el sistema nervioso central y transmiten la información a otras neuronas, llamadas neuronas motoras, cuyos axones se extienden de nuevo hacia la periferia. Por medio de estas últimas células, los impulsos se dirigen a las terminaciones motoras de los músculos, los excitan y originan su contracción y el movimiento adecuado. Así, el impulso nervioso sigue una trayectoria que empieza y acaba en la parte periférica del cuerpo. Muchas de las acciones del sistema nervioso se pueden explicar basándonos en estas cadenas de células nerviosas interconectadas que, al ser estimuladas en un extremo, son capaces de ocasionar un movimiento o secreción glandular en el otro.
La red nerviosa
Nervios craneales
Mientras que la mayoría de los nervios mayores emergen de la espina dorsal, los 12 pares de nervios craneales se proyectan directamente desde el encéfalo. Todos estos pares de nervios transmiten información motora o sensorial (o ambas); sin embargo, el décimo par, el nervio vago, se relaciona con funciones viscerales como el ritmo cardiaco, la vasoconstricción y la contracción de los músculos lisos que se encuentran en las paredes de la tráquea, del estómago y del intestino.
Los nervios craneales se extienden desde la cabeza y el cuello hasta el cerebro pasando a través de las aberturas del cráneo; los nervios espinales o medulares están asociados con la médula espinal y atraviesan las aberturas de la columna vertebral. Ambos tipos de nervios se componen de un gran número de axones que transportan los impulsos hacia el sistema nervioso central y llevan los mensajes hacia el exterior. Las primeras vías se llaman aferentes y las últimas eferentes. En función de la parte del cuerpo que alcanzan, a los impulsos nerviosos aferentes se les denomina sensitivos y a los eferentes, somáticos o motores viscerales. La mayoría de los nervios son mixtos, es decir, están constituidos por elementos motores y sensitivos.
Los nervios craneales y espinales aparecen por parejas y, en la especie humana, su número es 12 y 31 respectivamente. Los pares de nervios craneales se distribuyen por las regiones de la cabeza y el cuello, con una notable excepción: el par X o nervio vago, que además de inervar órganos situados en el cuello, alcanza otros del tórax y el abdomen. La visión, la audición, el sentido del equilibrio y el gusto están mediados por los pares de nervios craneales II, VIII y VII, respectivamente. De los nervios craneales también dependen las funciones motoras de la cabeza, los ojos, la cara, la lengua, la laringe y los músculos que funcionan en la masticación y la deglución. Los nervios espinales salen desde las vértebras y se distribuyen por las regiones del tronco y las extremidades. Están interconectados, formando dos plexos: el braquial, que se dirige a las extremidades superiores, y el lumbar que alcanza las inferiores.
Sistema nervioso vegetativo
El sistema nervioso autónomo dirige las actividades corporales sobre las que el individuo no tiene un control consciente, como la respiración o la digestión. Consta de dos partes: el sistema simpático y el parasimpático.
Existen grupos de fibras motoras que llevan los impulsos nerviosos a los órganos que se encuentran en las cavidades del cuerpo, como el estómago y los intestinos (vísceras). Estas fibras constituyen el sistema nervioso vegetativo que se divide en dos secciones con una función más o menos antagónica y con unos puntos de origen diferentes en el sistema nervioso central. Las fibras del sistema nervioso vegetativo simpático se originan en la región media de la médula espinal, unen la cadena ganglionar simpática y penetran en los nervios espinales, desde donde se distribuyen de forma amplia por todo el cuerpo. Las fibras del sistema nervioso vegetativo parasimpático se originan por encima y por debajo de las simpáticas, es decir, en el cerebro y en la parte inferior de la médula espinal. Estas dos secciones controlan las funciones de los sistemas respiratorio, circulatorio, digestivo y urogenital.
ALTERACIONES DEL SISTEMA NERVIOSO
La neurología se encarga del estudio y el tratamiento de las alteraciones del sistema nervioso y la psiquiatría de las perturbaciones de la conducta de naturaleza funcional. La división entre estas dos especialidades médicas no está definida con claridad debido a que las alteraciones neurológicas muestran con frecuencia síntomas orgánicos y mentales. Para la discusión de enfermedad mental funcional, véase Enfermedades mentales.
Las alteraciones del sistema nervioso comprenden malformaciones genéticas, intoxicaciones, defectos metabólicos, alteraciones vasculares, inflamaciones, degeneración y tumores, y están relacionadas con las células nerviosas o sus elementos de sostén. Entre las causas más comunes de la parálisis y de otras complicaciones neurológicas se encuentran las alteraciones vasculares, tales como la hemorragia cerebral y otras formas de apoplejía. Algunas enfermedades manifiestan una distribución por edad y geográfica peculiar; por ejemplo, la esclerosis múltiple degenerativa del sistema nervioso es común en las zonas templadas, pero rara en los trópicos.
El sistema nervioso es susceptible a las infecciones provocadas por una gran variedad de bacterias, parásitos y virus. Por ejemplo, la meningitis o la inflamación de las meninges (las membranas que recubren el cerebro y la médula espinal) puede originarse por numerosos agentes; sin embargo, la infección por un virus específico causa la rabia. Algunos virus que provocan dolencias neurológicas afectan sólo a ciertas partes del sistema nervioso; es el caso del virus que origina la poliomielitis que suele atacar a la médula espinal; el que causa la encefalitis afecta al cerebro.
Las inflamaciones del sistema nervioso se denominan en función de la parte a la que afectan. Así, la mielitis es la inflamación de la médula espinal y la neuritis la de un nervio. Estas alteraciones pueden producirse no sólo por infecciones, sino también por intoxicación, alcoholismo o lesiones. Los tumores que se originan en el sistema nervioso suelen componerse de tejido meníngeo o de células de la neuroglia (tejido de sostén), dependiendo de la parte específica que esté afectada. Sin embargo, otros tipos de tumores pueden sufrir metástasis (propagarse) o invadir el sistema nervioso. Véase Cáncer (medicina). En ciertas alteraciones, como la neuralgia, la migraña y la epilepsia puede no existir ninguna evidencia de daño orgánico. Otra alteración, la parálisis cerebral, está asociada con una lesión cerebral producida antes, durante o después del nacimiento.
SISTEMA ÓSEO
El esqueleto humano es una estructura fuerte y flexible formada por 206 huesos, que soporta el cuerpo y protege los órganos internos. Además, los huesos del esqueleto almacenan calcio, un mineral esencial para la actividad de las células nerviosas y musculares. El núcleo blando del hueso, la médula ósea, es el lugar en el que se forman los glóbulos rojos, ciertos glóbulos blancos y las plaquetas. Los huesos tienen diferentes tamaños y formas, adaptados para realizar funciones específicas. El esternón, por ejemplo, es una lámina ósea que ayuda a proteger el corazón y los pulmones en el pecho. Los huesos fusionados del cráneo encierran en su interior el encéfalo. Los huesos cortos y delicados de la muñeca y la mano aumentan la destreza y proporcionan una considerable flexibilidad en los movimientos pequeños y precisos. Los huesos largos y pesados de las piernas actúan como palancas resistentes a la hora de realizar movimientos rápidos o enérgicos.
El esqueleto humano es el conjunto total y organizado de piezas óseas que proporciona al cuerpo humano una firme estructura multifuncional (locomoción, protección, contención, sustento, etc.). A excepción del hueso hioides —que se halla separado del esqueleto—, todos los huesos están articulados entre sí formando un continuum, soportados por estructuras conectivas complementarias como ligamentos, tendones, y cartílagos.
El esqueleto de un ser humano adulto tiene, aproximadamente, 206 huesos, sin contar las piezas dentarias, los huesos suturales o wormianos (supernumerarios del cráneo) y los huesos sesamoideos. El esqueleto humano participa con el 12 por ciento del peso total del cuerpo, así una persona que pesa 75 kilogramos, 9 kilogramos de ellos son por su esquelto.
El conjunto organizado de huesos —u órganos esqueléticos— conforma el sistema esquelético, el cual concurre con otros sistemas orgánicos (sistema nervioso, sistema articular y sistema muscular) para formar el aparato locomotor.
El esqueleto óseo es una estructura propia de los vertebrados. En Biología, un esqueleto es toda estructura rígida o semirrígida que da sostén y proporciona la morfología básica del cuerpo, así, algunos cartílagos faciales (nasal, auricular, etc.) debieran ser considerados también formando parte del esqueleto.
Funciones
El sistema esquelético tiene varias funciones, entre ellas las más destacadas son:
Sostén mecánico del cuerpo y de sus partes blandas: funcionando como armazón que mantiene la morfología corporal;
Mantenimiento postural: permite posturas como la bipedestación;
Soporte dinámico: colabora para la marcha, locomoción y movimientos corporales: funcionando como palancas y puntos de anclaje para los músculos;
Contención y protección de las vísceras, ante cualquier presión o golpe del exterior, como, por ejemplo, las costillas al albergar los pulmones, órganos delicados que precisan de un espacio para ensancharse,
Almacén metabólico: funcionando como moderador (tampón o amortiguador) de la concentración e intercambio de sales de calcio y fosfatos.
Transmisión de vibraciones.
Además, en la corteza esponjosa de algunos huesos, se localiza la médula ósea, la cual lleva a cabo la hematopoyesis o formación y diferenciación de las células sanguíneas.
Número de huesos
El número de huesos en personas adultas va desde los 206 hasta los 208 aproximadamente, pero debemos recordar que esta cifra no se cumple en los niños pequeños y menos aún en los recién nacidos. Esto se debe a que los recién nacidos nacen con algunos huesos separados para facilitar su salida desde el canal de parto, por ejemplo tenemos los huesos del cráneo, si palpamos la cabeza de un recién nacido encontramos partes blandas llamadas fontanelas: en ellas los huesos están unidos por tejido cartilaginoso que luego se osificará para formar el cráneo de un adulto.
También el maxilar se encuentra dividido en dos, el maxilar superior y el inferior, cuando se suture el maxilar inferior dará lugar a un tipo de sutura llamada sínfisis. Así que el número de huesos depende de la edad de la persona a la cual se refiera, pero como promedio para un adulto es alrededor de 206 huesos.
División del esqueleto
Vista frontal y vista trasera del esqueleto humano.
Uno de los esquemas para el estudio del esqueleto humano, lo divide en dos partes:
El esqueleto axial, que son los huesos situados a la línea media o eje, y ellos soportan el peso del cuerpo como la columna vertebral. Se encargan principalmente de proteger los órganos internos.
El esqueleto apendicular, que son el resto de los huesos pertenecientes a las partes anexas a la línea media (apéndices); concretamente, los pares de extremidades y sus respectivas cinturas, y ellos son los que realizan mayores movimientos como la muñeca...
Esqueleto axial: 80 huesos aproximadamente
Huesos de la columna vertebral (raquis): 26 huesos aproximadamente
Cervicales (cuello): 7
Torácicos: 12
Lumbares: 5
Sacro: 1 (formado por la fusión de 5 vértebras)
Cóccix: 1 (formado por la fusión de 4 vértebras)
Huesos de la cabeza (calavera): 29 huesos
Cráneo: 8
Cara: 14
Oído: 8
Hioides: 1 (hueso no articulado con el esqueleto)
Huesos del Tórax (25)
Costillas: 24 (12 pares)
Esternón: 1
Esqueleto apendicular: 126 huesos
Huesos de la cintura escapular: 4 huesos
Huesos de las extremidades superiores: 30 x 2
Brazo: 1 x 2
Antebrazo: 2 x 2
Mano:
Carpo (muñeca): 8 x 2
Metacarpo (mano): 5 x 2
Falanges (dedos): 14 x 2
En los miembros superiores y pectorales: 64
Brazos y manos: 60
Hombros: 2 clavículas y dos escápulas.
En los miembros inferiores y pélvicos: 62
Piernas y pies: 60
Pelvis: 2 huesos pélvicos (formados por la fusión del ilion, isquion y pubis)
Enfermedades del sistema esquelético
Aquí se listan algunas enfermedades que afectan el sistema esquelético:
Fractura (medicina)
Osteomielitis y Osteonecrosis
Cáncer óseo primario y Osteosarcoma
Osteomalacia y Raquitismo
Osteoporosis y Osteopetrosis
Osteogénesis imperfecta
Acromegalia
Acondroplasia y enanismo
Saturnismo y toxicidad de metales pesados